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Abstract—With the rapid advancements in drone technology
and its diverse applications in military and industrial sec-
tors, there’s an imperative need for efficient drone detection
mechanisms. This paper presents a solution using cost-efficient
small radars, achieving a high accuracy rate of over 98%
in drone detection. These radars address the challenges of
minimal drone radar signatures, providing enhanced security and
regulatory compliance. The project’s code is available on GitHub
https://github.com/eyalyakir159/radar systems eyal project.

I. INTRODUCTION

The advent of sophisticated drone technology, fueled by
advancements in artificial intelligence, chips, and hardware,
has revolutionized various sectors, including military and
industrial domains. The reduction in drone prices has not
only democratized their access but also diversified their ap-
plications, ranging from instruments of targeted destruction
equipped with small explosives or weapons to efficient means
of transporting goods. The proliferation of drones necessitates
the development of robust, high-resolution detection and track-
ing systems to mitigate security risks and ensure adherence to
regulations in both military and industrial contexts.

Drones, due to their compact size and minimal radar signa-
ture, pose substantial challenges in detection [5]. Their small
radar signatures often resemble other entities such as birds
and cars , complicating the differentiation process [6]. Cur-
rent detection methodologies primarily rely on high-resolution
cameras [7] coupled with intricate image detection models and
radar systems [5]. However, these methods are often hindered
by the limitations inherent to radar detection, including the
need for multiple small radars instead of a singular large one
to address the small and similar radar signatures of drones.

This paper aims to delve deeper into the complexities and
challenges of drone detection, exploring innovative and cost-
effective solutions to address the limitations of existing detec-
tion methodologies. The study focuses on the development of
small, precise radars, detailing their capability to detect drones
with over 98% accuracy and monitor their speed and location.
The proposed small radars are designed to be economically
viable, allowing for widespread deployment on cars, towers,
streets, and more, to ensure comprehensive coverage and
enhanced security measures.

The innovations and findings discussed in this paper are
crucial for reinforcing security and regulation compliance in

drone operations across military and industrial sectors. By ad-
dressing the challenges in drone detection and offering viable
solutions, this study contributes to the ongoing discourse in
drone technology and its implications, providing insights and
directions for future research and development in the field.

II. DATA GATHERING AND PROCESSING

A. Radar Technology

The radar system utilized in this study is a 2D ubiquitous
or persistent radar system developed by the microwave and
radar group from the Universidad Politecnica de Madrid,
called RAD–DAR (Radar with Digital Array Receiver). This
radar system operates with an FMCW waveform, and a
programmable signal generator provides the waveform, clock,
and trigger signals. The system comprises a transmitting
antenna and eight receiving antennas, each consisting of an
array of eight elements, designed in microstrip technology.
The antennas ensure a half-power beamwidth of 10° in the
elevation plane and 90° in the azimuth plane.

TABLE I: Radar Parameters

Parameter Value
Radar Frequency (f1) 8.75 GHz (X-band)
Bandwidth (f) 200 MHz
Ramp Period (Tm) 350 s
Ramp Frequency (fm) 2.86 kHz
Number of Samples per Ramp (Ns) 8192
Number of Integrated Ramps (Nd) 512
Number of Channels (Na) 8
Number of Range Bins (Nr) 4096
Dwell Time (Td) 0.1792 s
Number of Synthesised Beams 5 (40°, 20°,0°,20°,40°)
Sample Rate (fs) 32 MHz
Maximum Beating Frequency (fbmax) 16 MHz
Mean-time Gap Between Cubes 0.53 s

Note: In this paper, we did not construct the radar; we
used data that was received from this radar. Understanding the
source of the signals is crucial for comprehending the data
processing and detection mechanisms involved in this study
[4].

B. Data Processing

The data processing chain transforms the raw data acquired
by the radar into a time-doppler matrix, which is crucial for
detecting and extracting information about the object. This
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matrix is significant as it allows for the visual differentiation
of targets based on their radar cross-section (RCS) and motion
characteristics, enabling the distinction between drones, cars,
and people.

The data is received as a 10 × 61 matrix, where each
row represents a distance cell and each column represents
a Doppler frequency. This matrix is obtained by applying a
2D Fast Fourier Transform (FFT) to the raw tensors acquired
by the hardware, followed by beamforming and monopulse
techniques.

The target range information is drawn from the beating
frequency since the system uses an FMCW waveform. This
frequency is the difference between transmitted and reflected
frequencies. Mathematically, range information is estimated as
in the equation below:

R =
fb · c · Tm

2∆f

where R is the range in meters, fb is the beating frequency,
Tm is the signal period, c is the speed of light, and ∆f is the
bandwidth of the signal.

Next, a second FFT is applied in the slow-time axis to obtain
the Doppler information of the target. The equation for 2D
FFT is given by:

X(k, l) =

M−1∑
m=0

N−1∑
n=0

x(m,n) · e−j2π( km
M + ln

N )

where X(k, l) is the 2D FFT of the input signal x(m,n), and
M and N are the dimensions of the 2D input signal.

Fig. 1: Time–Doppler Cube

This meticulous processing and the subsequent formation of
the time-doppler matrix are pivotal in enhancing the accuracy
and reliability of object detection and classification in real-
world scenarios.

III. SIMULATIONS AND IMPROVMENTS

This section delineates the meticulous implementation and
evaluation of both the existing Convolutional Neural Network
(CNN) models and the proposed innovative models.

0 10 20 30 40 50 60
Doppler Cell

0

2

4

6

8

Di
st

an
ce

 C
el

l

Doppler Matrix Heatmap

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
M

ag
ni

tu
de

(a) Person Example 1
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(b) Person Example 2

Fig. 2: Examples of People
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(a) Drone Example 1
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(b) Drone Example 2

Fig. 3: Examples of Drones
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(a) Car Example 1
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(b) Car Example 2

Fig. 4: Examples of Cars

A. Simulation of Existing CNN Networks

In this subsection, we replicate the CNN classifier as
delineated in the DopplerNet study [4] to ensure consistency
and reliability in comparative analysis. The objective is to gain
insights into the foundational model’s performance metrics and
operational dynamics, providing a baseline for evaluating the
innovations introduced in our proposed models.

The constructed network is meticulously designed, incor-
porating a singular convolutional neural network (CNN) layer
endowed with 32 filters, followed by four linear processing
layers. The CNN layer plays a pivotal role in the architecture,
tasked with the extraction of salient features inherent in the
data. This layer is instrumental in discerning intricate patterns
and nuanced characteristics within the input, enabling the
model to capture the underlying complexities of the dataset.
Subsequent to the feature extraction phase, the linear lay-
ers undertake the responsibility of processing the acquired
data. These layers are meticulously engineered to analyze
the extracted features, synthesizing them to draw informed



Fig. 5: Diagram of the DopplerNet Network

and accurate conclusions. This synergistic interplay between
feature extraction and data processing allows the network to
make robust and reliable predictions, ensuring the integrity and
efficacy of the model in diverse applications.

B. Proposed Network and Improvements

In this subsection, we present and expound upon a novel
network architecture, meticulously designed to navigate the
intricate complexities inherent in the considered dataset. Ad-
ditionally, recognizing that in real-world scenarios, radar pre-
dominantly encounters default terrain devoid of targets such
as people, cars, or drones, we have incorporated an additional
detection object—plain terrain (or the absence of significant
objects). This inclusion is meticulously generated with respect
to varying terrains, including mountains, sea, and grass, serv-
ing as a critical parameter to assess the model’s discernment
capabilities.

1) Enhanced U-Net Architecture: This architecture symbol-
izes the apex of our innovative endeavors, unveiling a model
anchored in the U-Net [2] framework and augmented with
specialized enhancements. The network is bifurcated into two
core components: the encoder and the decoder. The encoder,
employing deep convolutional layers, is tasked with feature
extraction, downsampling, and the amplification of feature
depth. Conversely, the decoder is dedicated to the synthesis
of features while undertaking data upsampling.

Acknowledging the intricate nature of our dataset, we
have instituted specialized connections, denominated as Time
Doppler to Range Speed (TDRS), between each analogous
layer in the encoder and the decoder. This innovation enables
the decoder to assimilate both the refined features and the
intrinsic, valuable data.

To culminate the architecture, a sequence of linear layers is
integrated to synthesize the data extrapolated by the network
and to render a conclusive detection outcome.

a) TDRS Block: The TDRS block, integral to the En-
hanced U-Net Architecture, is devised to convert the time
doppler matrix into a SPEED RANGE matrix through a linear
processing layer transformation, mathematically represented
as:

output = linear
(
fb · c · Tm

2∆f

)
where c represents the speed of light, and the definitions and

elaborations of the other parameters are provided in Section 2
(Data Gathering and Processing).

This transformation enables the conversion of the extracted
features into a more utilizable format, thereby enhancing the
network’s capability to draw accurate and reliable conclusions.

2) Terrain Data Generation: In this section, we elaborate
on the generation of an additional detection modality for the
model, representing standard terrains such as grass, sea, or
mountain. This enhancement is pivotal for refining the model’s
discriminatory capabilities, enabling it to differentiate between
significant targets and the prevalent terrains in real-world
scenarios.

The terrain data is synthesized utilizing a specialized
function designed to simulate radar signals corresponding
to distinct terrain types. This function, denominated as
simulate_radar_signal, accepts a terrain type and
generates a simulated radar signal, represented as a 10 × 61
time doppler matrix, reflective of the specified terrain.

Algorithm 1 Pseudocode for Terrain Data Generation

1: procedure SIMULATERADARSIGNAL(terrain)
2: assert terrain in [’mountain’,’grass’,’sea’]
3: Set seed for reproducibility
4: Initialize signal with random noise of size 10× 61
5: if terrain == ’mountain’ then
6: Increase power in the first 20 frequency bins
7: else if terrain == ’grass’ then
8: Increase power in the middle 20 frequency bins
9: else if terrain == ’sea’ then

10: Increase power in the last 21 frequency bins
11: end if
12: return modified signal
13: end procedure

The function initializes the signal with random noise, under
the foundational assumption that the signal is a random vari-
able, and modifies it based on the specified terrain type. This
simulated variation in radar signals is crucial for mimicking
the discrepancies encountered across different terrains.

In this simulation:
• The sea terrain is associated with high frequencies, re-

flecting the smoother and more reflective surface of water
bodies, which typically result in higher frequency returns.

• The grass terrain is assigned middle frequencies, symbol-
izing the intermediate roughness and reflectivity of grassy
landscapes.



Fig. 6: Diagram of the U-net Network

• The mountain terrain is allocated low frequencies, repre-
senting the rugged and irregular surfaces of mountainous
regions, which generally yield lower frequency returns.

Note: It is imperative to acknowledge that the data gener-
ated through this method does not represent real-world data.
Instead, it serves solely as a synthetic dataset, constructed to
assess the network’s ability to distinguish between target and
non-target entities within varied terrains.

This meticulous categorization and simulation of terrains
serve as a foundational element for training the model to
recognize and differentiate between various terrain types,
thereby enhancing its precision and adaptability in diverse
environmental contexts.

IV. RESULTS

In this section, we showcase the performance outcomes
of the DopplerNet Network and the augmented U-Net ar-
chitecture, both with and without supplementary terrain data.
Results are depicted via graphical false alarm illustrations and
benchmarking tables comparing network metrics.

A. Training Environment and Parameters

Note: All networks were trained utilizing 8 GPU 1080ti for
a duration of 60 minutes in Professor Haim Permuter’s lab.

TABLE II: Training Parameters

Parameter Value
Learning Rate 0.0002
Epochs 100
Batch Size 32
Optimizer Adam
Criterion BCE With LogitsLoss

B. Data

This subsection provides an overview of the datasets utilized
in our study. The datasets encompass various data types,

including car, drone, people, and terrain data. The specific
quantities of each data type are detailed in Table III.

TABLE III: Amount of Data

Data Type Amount
Car 5720
Drone 5065
People 6700
Terrain 5000

C. DopplerNet Network

Fig. 7: False Alarm representation for DopplerNet Network
without added terrain



Fig. 8: False Alarm representation for DopplerNet Network
with added terrain

Fig. 9: False Alarm representation for Enhanced U-Net Archi-
tecture without added terrain

Fig. 10: False Alarm representation for Enhanced U-Net
Architecture with added terrain

D. Unet Network
E. Benchmarking

Comparative analyses of the networks are presented in Ta-
bles VII and V, showcasing the performance metrics including
Accuracy, Precision, and Recall for scenarios without and with
added terrain respectively.

Accuracy: Accuracy is the ratio of correctly predicted
instances to the total instances in the dataset. It can be
calculated using the formula:

Accuracy =
Number of correct predictions
Total number of predictions

Precision: Precision, also known as Positive Predictive
Value, is the ratio of correctly predicted positive observations
to the total predicted positives. The formula for precision is:

Precision =
True Positives

True Positives + False Positives
Recall: Recall, also referred to as Sensitivity or True

Positive Rate, is the ratio of correctly predicted positive
observations to all the actual positives. The formula for recall
is:

Recall =
True Positives

True Positives + False Negatives

TABLE IV: Benchmarking of Networks without Added Ter-
rain

Network Accuracy Precision Recall
DopplerNet 95.85% 92.91% 95.26%
Enhanced U-Net 98.02% 96.33% 97.31%

TABLE V: Benchmarking of Networks with Added Terrain

Network Accuracy Precision Recall
DopplerNet 97.24% 92.76% 97.20%
Enhanced U-Net 98.67% 96.50% 98.10%
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V. DISCUSSION AND FURTHER ANALYSIS

In our pursuit to understand the intricacies of the data and
its amenability to various network architectures, we further
explored two distinct neural network designs: a rudimentary
linear network and a more sophisticated convolutional neural
network (CNN). The rationale behind this exploration was
twofold. Firstly, by employing a basic linear network, we
aimed to ascertain if the data possesses inherent linearity, mak-
ing it susceptible to simpler modeling techniques. Secondly,
by juxtaposing the results with a complex CNN, we intended
to gauge the potential improvements or nuances that arise from
a more intricate architectural design.

A. Linear Network Analysis

The linear network has four decreasing-sized layers with
intermittent dropout to prevent overfitting. Its results can
indicate the data’s simplicity, potentially negating the need for
complex designs.

Fig. 11: Performance representation for the Linear Network
without added terrain

Fig. 12: Performance representation for the Linear Network
with added terrain

B. Advanced CNN Analysis

The advanced CNN, with its layered design, aims to detect
intricate data patterns. Comparing it to the linear network
highlights the benefits and need for such complex architectures
for the dataset.

Fig. 13: Performance representation for the Advanced CNN
without added terrain

Fig. 14: Performance representation for the Advanced CNN
with added terrain

TABLE VI: Benchmarking of Networks without Added Ter-
rain

Network Accuracy Precision Recall
DopplerNet 95.85% 92.91% 95.26%
Enhanced U-Net 98.02% 96.33% 97.31%
Linear 89.24% 88.44% 82.31%
Advanced CNN 96.44% 93.22% 96.78%

TABLE VII: Benchmarking of Networks with Added Terrain

Network Accuracy Precision Recall
DopplerNet 97.24% 92.76% 97.20%
Enhanced U-Net 98.67% 96.50% 98.10%
Linear 92.91% 79.91% 97.79%
Advanced CNN 97.43% 92.44% 97.47%
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